Host cell reactivation of gene expression for an adenovirus-encoded reporter gene reflects the repair of UVC-induced cyclobutane pyrimidine dimers and methylene blue plus visible light-induced 8-oxoguanine.

نویسندگان

  • Derrik M Leach
  • Natalie J Zacal
  • Andrew J Rainbow
چکیده

Previously, we have reported the use of a recombinant adenovirus (Ad)-based host cell reactivation (HCR) assay to examine nucleotide excision repair (NER) of UVC-induced DNA lesions in several mammalian cell types. The recombinant non-replicating Ad expresses the Escherichia coli β-galactosidase (β-gal) reporter gene under control of the cytomegalovirus immediate-early enhancer region. We have also used methylene blue plus visible light (MB + VL) to induce the major oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG) in the recombinant Ad-encoded reporter gene in order to study base excision repair (BER). The reported variability regarding 8-oxoG's potential to block transcription by RNA polymerase II and data demonstrating that a number of factors play a role in transcriptional bypass of the lesion led us to examine the repair of 8-oxoG in the Ad reporter and its relationship to HCR for expression of the reporter gene. We have used Southern blotting to examine removal of UVC- and MB + VL-induced DNA damage by loss of endonuclease-sensitive sites from the Ad-encoded β-gal reporter gene in human and rodent cells. We show that repair of MB + VL-induced 8-oxoG via BER and UVC-induced cyclobutane pyrimidine dimers (CPDs) via NER is substantially greater in human SV40-transformed GM637F skin fibroblasts compared to hamster CHO-AA8 cells. We also show that HCR for expression of the MB + VL-damaged and the UVC-damaged reporter gene is substantially greater in human SV40-transformed GM637F skin fibroblasts compared to hamster CHO-AA8 cells. The difference between the human and rodent cells in the removal of both 8-oxoG and CPDs from the damaged reporter gene was comparable to the difference in HCR for expression of the damaged reporter gene. These results suggest that the major factor for HCR of the MB + VL-treated reporter gene in mammalian cells is DNA repair in the Ad rather than lesion bypass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early host cell reactivation of an oxidatively damaged adenovirus-encoded reporter gene requires the Cockayne syndrome proteins CSA and CSB.

Reduced host cell reactivation (HCR) of a reporter gene containing 8-oxoguanine (8-oxoG) lesions in Cockayne syndrome (CS) fibroblasts has previously been attributed to increased 8-oxoG-mediated inhibition of transcription resulting from a deficiency in repair. This interpretation has been challenged by a report suggesting reduced expression from an 8-oxoG containing reporter gene occurs in all...

متن کامل

Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2.

Germ line mutations in the mismatch repair (MMR) genes hMSH2 and hMLH1 account for approximately 98% of hereditary non-polyposis colorectal cancers. In addition, there is increasing evidence for an involvement of MMR gene expression in the response of cells to UV-induced skin cancer. The link between MMR and skin cancer suggests an involvement of MMR gene expression in the response of skin cell...

متن کامل

Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction.

The photolyases, DNA repair enzymes that use visible and long-wavelength UV light to repair cyclobutane pyrimidine dimers (CPDs) created by short-wavelength UV, belong to the larger photolyase-cryptochrome gene family. Cryptochromes (UVA-blue light photoreceptors) lack repair activity, and sensory and regulatory roles have been defined for them in plants and animals. Evolutionary considerations...

متن کامل

Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.

We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...

متن کامل

The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts.

We investigated the contribution of the xeroderma pigmentosum group C (XPC) gene to DNA repair. We stably transfected XPC cells (XP4PA-SV-EB) with XPC cDNA and selected a partially corrected (XP4PA-SE1) and a fully corrected (XP4PA-SE2) clone. Cell survival after UVC (254 nm) exposure was low for XP4PA-SV-EB, intermediate for XP4PA-SE1, and normal for XP4PA-SE2 cells. XP4PA-SV-EB cells had unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutagenesis

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2013